4180-23-8Relevant articles and documents
METHODS OF BORYLATION AND USES THEREOF
-
Page/Page column 61-62, (2021/04/30)
The present invention relates, in general terms, to methods of borylation and uses thereof. In particular, the present invention provides a method of borylating an alkene compound by contacting the compound with a boron compound, a Fe pre-catalyst and a protic additive. The borylation occurs at a vicinal (β) position to an electron donating or electron withdrawing moiety of the compound.
Facile Synthesis of Chiral Arylamines, Alkylamines and Amides by Enantioselective NiH-Catalyzed Hydroamination
Meng, Lingpu,Yang, Jingjie,Duan, Mei,Wang, You,Zhu, Shaolin
supporting information, p. 23584 - 23589 (2021/09/28)
Regio- and enantioselective hydroarylamination, hydroalkylamination and hydroamidation of styrenes have been developed by NiH catalysis with a simple bioxazoline ligand under mild conditions. A wide range of enantioenriched benzylic arylamines, alkylamines and amides can be easily accessed by nitroarenes, hydroxylamines and dioxazolones, respectively as amination reagents. The chiral induction in these reactions is proposed to proceed through an enantiodifferentiating syn-hydronickellation step.
Method for synthesizing 1, 2-disubstituted olefin through reaction of terminal group olefin and sulfoxide
-
Paragraph 0053-0054; 0057-0062; 0074, (2021/02/10)
The invention discloses a method for synthesizing 1, 2-disubstituted olefin by reaction of terminal olefin and sulfoxide. According to the method, terminal olefin with sulfoxide make reaction in one pot in the presence of ferric salt and hydrogen peroxide to generate the 1, 2-disubstituted olefin. sulfoxide is simultaneously used as a hydrocarbylation reagent and a solvent of olefin, and a reaction product is 1, 2-disubstituted olefin of which a terminal carbon atom in terminal olefin is coupled with a sulfoxide alkyl group, so that an olefin carbon chain is increased; the reaction conditionsare mild, the selectivity is high, the yield is high, and industrial production is facilitated.
Synthesis, Reactivity, and Coordination of Semihomologous dppf Congeners Bearing Primary Phosphine and Primary Phosphine Oxide Groups
Horky, Filip,Císa?ová, Ivana,?těpni?ka, Petr
, p. 427 - 441 (2021/02/06)
This contribution reports the synthesis of two phosphinoferrocene ligands desymmetrized by an inserted methylene spacer, viz., a bis-phosphine combining primary and tertiary phosphine moieties in its structure, Ph2PfcCH2PH2 (2), and a structurally unique, stable phosphine-primary phosphine oxide Ph2PfcCH2P(O)H2 (7; fc = ferrocene-1,1′-diyl). Compounds 2 and 7, together with 1,1′-bis(diphenylphosphino)ferrocene (dppf), the bis-tertiary phosphine Ph2PfcCH2PPh2, and the adduct Ph2P(BH3)fcCH2PH2 (6), were studied as ligands in Ru(II) complexes bearing auxiliary ν6-arene ligands and both free ligands and the isolated complexes were structurally authenticated, using spectroscopic methods and X-ray crystallography, and further investigated by cyclic voltammetry. The results suggest that distinct donor moieties in the unsymmetric ligands differentiate the otherwise identical coordinated metal centers and that the phosphine moiety in phosphine-phosphine oxide ligand 7 is preferably coordinated to Ru(II), before the phosphine oxide group, which must tautomerize into the hydroxyphosphine form prior to coordination.
Highly Z-Selective Double Bond Transposition in Simple Alkenes and Allylarenes through a Spin-Accelerated Allyl Mechanism
Kim, Daniel,Pillon, Guy,Diprimio, Daniel J.,Holland, Patrick L.
supporting information, p. 3070 - 3074 (2021/03/08)
Double-bond transposition in alkenes (isomerization) offers opportunities for the synthesis of bioactive molecules, but requires high selectivity to avoid mixtures of products. Generation of Z-alkenes, which are present in many natural products and pharmaceuticals, is particularly challenging because it is usually less thermodynamically favorable than generation of the E isomers. We report a β-dialdiminate-supported, high-spin cobalt(I) complex that can convert terminal alkenes, including previously recalcitrant allylbenzenes, to Z-2-alkenes with unprecedentedly high regioselectivity and stereoselectivity. Deuterium labeling studies indicate that the catalyst operates through a π-allyl mechanism, which is different from the alkyl mechanism that is followed by other Z-selective catalysts. Computations indicate that the triplet cobalt(I) alkene complex undergoes a spin state change from the resting-state triplet to a singlet in the lowest-energy C-H activation transition state, which leads to the Z product. This suggests that this change in spin state enables the catalyst to differentiate the stereodefining barriers in this system, and more generally that spin-state changes may offer a route toward novel stereocontrol methods for first-row transition metals.
Electro-mediated PhotoRedox Catalysis for Selective C(sp3)–O Cleavages of Phosphinated Alcohols to Carbanions
Barham, Joshua P.,K?nig, Burkhard,Karl, Tobias A.,Reiter, Sebastian,Tian, Xianhai,Yakubov, Shahboz,de Vivie-Riedle, Regina
supporting information, p. 20817 - 20825 (2021/08/18)
We report a novel example of electro-mediated photoredox catalysis (e-PRC) in the reductive cleavage of C(sp3)?O bonds of phosphinated alcohols to alkyl carbanions. As well as deoxygenations, olefinations are reported which are E-selective and can be made Z-selective in a tandem reduction/photosensitization process where both steps are photoelectrochemically promoted. Spectroscopy, computation, and catalyst structural variations reveal that our new naphthalene monoimide-type catalyst allows for an intimate dispersive precomplexation of its radical anion form with the phosphinate substrate, facilitating a reactivity-determining C(sp3)?O cleavage. Surprisingly and in contrast to previously reported photoexcited radical anion chemistries, our conditions tolerate aryl chlorides/bromides and do not give rise to Birch-type reductions.
A donor-acceptor complex enables the synthesis of: E -olefins from alcohols, amines and carboxylic acids
Chen, Kun-Quan,Shen, Jie,Wang, Zhi-Xiang,Chen, Xiang-Yu
, p. 6684 - 6690 (2021/05/31)
Olefins are prevalent substrates and functionalities. The synthesis of olefins from readily available starting materials such as alcohols, amines and carboxylic acids is of great significance to address the sustainability concerns in organic synthesis. Metallaphotoredox-catalyzed defunctionalizations were reported to achieve such transformations under mild conditions. However, all these valuable strategies require a transition metal catalyst, a ligand or an expensive photocatalyst, with the challenges of controlling the region- and stereoselectivities remaining. Herein, we present a fundamentally distinct strategy enabled by electron donor-acceptor (EDA) complexes, for the selective synthesis of olefins from these simple and easily available starting materials. The conversions took place via photoactivation of the EDA complexes of the activated substrates with alkali salts, followed by hydrogen atom elimination from in situ generated alkyl radicals. This method is operationally simple and straightforward and free of photocatalysts and transition-metals, and shows high regio- and stereoselectivities.
Rapid synthesis method of biomass-based olefin
-
Paragraph 0020; 0032-0035; 0041-0046, (2021/07/31)
The invention discloses a rapid synthesis method of biomass-based olefin, which comprises the following steps: by taking a biomass ketone compound as a substrate and 2-pentanol as a hydrogen source and a solvent at the same time, under the action of hafnium/zirconium-based catalysts such as hafnium phenylphosphonate and Zirconium phenylphosphonate, hafnium phytate andzirconium phytate and hafnium polydivinylphenylphosphonate and zirconium polydivinylphenylphosphonate, selectively converting a biomass-based ketone compound into a corresponding alcohol compound, and continuously dehydrating to prepare olefin. According to the present invention, the time required by the system reaction is substantially shortened and is at least 2 h, the target product selectivity is significantly improved, the conversion rate of the representative reaction 4 '-methoxypropiophenone can at least achieve 99.8%, and the anethole yield can achieve 98.1%.
Iron Catalyzed Double Bond Isomerization: Evidence for an FeI/FeIII Catalytic Cycle
Woof, Callum R.,Durand, Derek J.,Fey, Natalie,Richards, Emma,Webster, Ruth L.
supporting information, p. 5972 - 5977 (2021/03/17)
Iron-catalyzed isomerization of alkenes is reported using an iron(II) β-diketiminate pre-catalyst. The reaction proceeds with a catalytic amount of a hydride source, such as pinacol borane (HBpin) or ammonia borane (H3N?BH3). Reactivity with both allyl arenes and aliphatic alkenes has been studied. The catalytic mechanism was investigated by a variety of means, including deuteration studies, Density Functional Theory (DFT) and Electron Paramagnetic Resonance (EPR) spectroscopy. The data obtained support a pre-catalyst activation step that gives access to an η2-coordinated alkene FeI complex, followed by oxidative addition of the alkene to give an FeIII intermediate, which then undergoes reductive elimination to allow release of the isomerization product.
Synthesis, antiepileptic effects, and structure-activity relationships of α-asarone derivatives: In vitro and in vivo neuroprotective effect of selected derivatives
Zhang, Jian,Mu, Keman,Yang, Peng,Feng, Xinqian,Zhang, Di,Fan, Xiangyu,Wang, Qiantao,Mao, Shengjun
, (2021/08/03)
In the present study, we compared the antiepileptic effects of α-asarone derivatives to explore their structure-activity relationships using the PTZ-induced seizure model. Our research revealed that electron-donating methoxy groups in the 3,4,5-position on phenyl ring increased antiepileptic potency but the placement of other groups at different positions decreased activity. Besides, in allyl moiety, the optimal activity was reached with either an allyl or a 1-butenyl group in conjugation with the benzene ring. The compounds 5 and 19 exerted better neuroprotective effects against epilepsy in vitro (cell) and in vivo (mouse) models. This study provides valuable data for further exploration and application of these compounds as potential anti-seizure medicines.