536-90-3Relevant articles and documents
Ullmann reaction of picryl bromide in the presence of ultrasound
Nelson,Adolph
, p. 293 - 305 (1991)
Ultrasonic irradiation was found to promote the Ullman coupling of picryl bromide at or below room temperature. In the presence of excess copper, a long-lived intermediate is formed that is quenched upon work-up affording variable mixtures of trinitrobenzene and picric acid.
Reduction of aromatic nitro compounds under solvent-free conditions using alumina-supported hydrazine/FeNH4(SO4)2· 12H2O
Zhang, Chang-Rui,Wang, Yu-Lu,Wang, Jin-Ye
, p. 569 - 570 (2004)
Aromatic nitro compounds were easily reduced to the corresponding amino compounds with hydrazine hydrate supported on alumina in the presence of FeNH4(SO4)2·12H2O.
THE PLATINUM CATALYZED REDUCTION OF NITROARENES TO AMINOARENES WITH CARBON MONOXIDE AND WATER
Watanabe, Yoshihisa,Tsuji, Yasushi,Ohsumi, Tatsuya,Takeuchi, Ryo
, p. 4121 - 4122 (1983)
Nitroarenes were readily transformed to aminoarenes in excellent yields under mild conditions with carbon monoxide and water in the presence of a platinum catalyst.Triethylamine, SnCl4 and PPh3 are essential for the high catalytic activity.Nitroarenes are reduced chemoselectively by this procedure.
Selective hydrodeoxygenation of acetophenone derivatives using a Fe25Ru75@SILP catalyst: a practical approach to the synthesis of alkyl phenols and anilines
Bordet, Alexis,Goclik, Lisa,Leitner, Walter,Walschus, Henrik
supporting information, p. 2937 - 2945 (2022/04/07)
A versatile synthetic pathway for the production of valuable alkyl phenols and anilines has been developed based on the selective hydrodeoxygenation of a wide range of hydroxy-, amino-, and nitro-acetophenone derivatives as readily available substrates. Bimetallic iron ruthenium nanoparticles immobilized on an imidazolium-based supported ionic liquid phase (Fe25Ru75@SILP) act as highly active and selective catalysts for the deoxygenation of the side-chain without hydrogenation of the aromatic ring. The catalytic system allows operation under continuous flow conditions with high robustness and flexibility as demonstrated for the alternating conversion of 3′,5′-dimethoxy-4′-hydroxyacetophenone and 4′-hydroxynonanophenone as model substrates.
Selective Reduction of Nitroarenes to Arylamines by the Cooperative Action of Methylhydrazine and a Tris(N-heterocyclic thioamidate) Cobalt(III) Complex
Ioannou, Dimitris I.,Gioftsidou, Dimitra K.,Tsina, Vasiliki E.,Kallitsakis, Michael G.,Hatzidimitriou, Antonios G.,Terzidis, Michael A.,Angaridis, Panagiotis A.,Lykakis, Ioannis N.
, p. 2895 - 2906 (2021/02/27)
We report an efficient catalytic protocol that chemoselectively reduces nitroarenes to arylamines, by using methylhydrazine as a reducing agent in combination with the easily synthesized and robust catalyst tris(N-heterocyclic thioamidate) Co(III) complex [Co(κS,N-tfmp2S)3], tfmp2S = 4-(trifluoromethyl)-pyrimidine-2-thiolate. A series of arylamines and heterocyclic amines were formed in excellent yields and chemoselectivity. High conversion yields of nitroarenes into the corresponding amines were observed by using polar protic solvents, such as MeOH and iPrOH. Among several hydrogen donors that were examined, methylhydrazine demonstrated the best performance. Preliminary mechanistic investigations, supported by UV-vis and NMR spectroscopy, cyclic voltammetry, and high-resolution mass spectrometry, suggest a cooperative action of methylhydrazine and [Co(κS,N-tfmp2S)3] via a coordination activation pathway that leads to the formation of a reduced cobalt species, responsible for the catalytic transformation. In general, the corresponding N-arylhydroxylamines were identified as the sole intermediates. Nevertheless, the corresponding nitrosoarenes can also be formed as intermediates, which, however, are rapidly transformed into the desired arylamines in the presence of methylhydrazine through a noncatalytic path. On the basis of the observed high chemoselectivity and yields, and the fast and clean reaction processes, the present catalytic system [Co(κS,N-tfmp2S)3]/MeNHNH2 shows promise for the efficient synthesis of aromatic amines that could find various industrial applications.
Efficient strategy for interchangeable roles in a green and sustainable redox catalytic system: IL/PdII-decorated SBA-15 as a mesoporous nanocatalyst
Sadeghi, Samira,Karimi, Meghdad,Radfar, Iman,Gavinehroudi, Reza Ghahremani,Saberi, Dariush,Heydari, Akbar
, p. 6682 - 6692 (2021/04/22)
Time and again, SBA-15-based composites as mesoporous materials and the incorporation of transition metals in them have been attracting dramatic attention in the field of catalysis due to their remarkable features. In this paper, the activity of SBA-15 supported ionic liquid-Pd(ii) has been investigated in the catalytic transfer hydrogenation of nitroarenes with formic acid as a hydrogen donor at room temperature in water medium, and the oxidation of benzyl alcohols to benzaldehyde derivatives under atmospheric oxygen at high temperature. This novel nanocatalyst was characterized by FT-IR, SA-XRD, BET, BJH, TGA, FE-SEM, TEM, and ICP as the most commonplace techniques for analyzing its characteristics to be revealed as truth. Furthermore, the EDX analysis illustrates the grafting of the ionic liquid-Pd(ii) into SBA-15. The catalyst showed high stability under reaction conditions, and can be recovered and reused for at least 15 and 6 reaction runs in oxidation and reduction reactions, respectively.
Fabrication of palladium nanocatalyst supported on magnetic eggshell and its catalytic character in the catalytic reduction of nitroarenes in water
?al??kan, Melike,Akay, Sema,Baran, Talat,Kayan, Berkant
, (2021/07/21)
Aromatic nitro compounds, which have good solubility in water, are highly toxic and non-biodegradable are one of the most important industrial pollutants and have negative effects on human health, aquatic life and the environment. Therefore, the elimination of these harmful organic compounds has become an issue of great importance. For this, in this study we have developed a palladium nanocatalyst supported on Fe3O4-coated eggshell and characterized by FT-IR, XRD, XPS, FE-SEM, TG/DTG, BET, TEM and EDS techniques (Pd-Fe3O4-ES). Also, the quantitative analysis of Pd was determined using ICP-OES. The catalytic behavior of the designed Pd-Fe3O4-ES nanocatalyst was investigated against the catalytic reduction of several highly toxic nitro compounds using NaBH4 in water at room temperature. The progress of the reduction was followed using high performance liquid chromatography (HPLC). The catalytic studies revealed that the nitro compounds were converted into the desired amines by the Pd-Fe3O4-ES nanocatalyst using a very low dose of catalyst (15 mg) and short-duration reactions (81–360 s) in aqueous medium at ambient temperature. Furthermore, the Pd-Fe3O4-ES nanocatalyst showed good catalytic stability by retaining its activity after the fifth catalytic run.
Minimization of Back-Electron Transfer Enables the Elusive sp3 C?H Functionalization of Secondary Anilines
Zhao, Huaibo,Leonori, Daniele
supporting information, p. 7669 - 7674 (2021/03/08)
Anilines are some of the most used class of substrates for application in photoinduced electron transfer. N,N-Dialkyl-derivatives enable radical generation α to the N-atom by oxidation followed by deprotonation. This approach is however elusive to monosubstituted anilines owing to fast back-electron transfer (BET). Here we demonstrate that BET can be minimised by using photoredox catalysis in the presence of an exogenous alkylamine. This approach synergistically aids aniline SET oxidation and then accelerates the following deprotonation. In this way, the generation of α-anilinoalkyl radicals is now possible and these species can be used in a general sense to achieve divergent sp3 C?H functionalization.
Ligand compound for copper catalyzed aryl halide coupling reaction, catalytic system and coupling reaction
-
Paragraph 0111-0118; 0120, (2021/05/29)
The invention provides a ligand compound capable of being used for copper catalyzed aryl halide coupling reaction, the ligand compound is a three-class compound containing a 2-(substituted or non-substituted) aminopyridine nitrogen-oxygen group, and the invention also provides a catalytic system for the aryl halide coupling reaction. Thecatalytic system comprises a copper catalyst, a compound containing a 2-(substituted or non-substituted) aminopyridine nitrogen-oxygen group adopted as a ligand, alkali and a solvent, and meanwhile, the invention also provides a system for the aryl halide coupling reaction adopting the catalyst system. The compound containing the 2-(substituted or non-substituted) aminopyridine nitrogen oxygen group can be used as the ligand for the copper catalyzed aryl chloride coupling reaction, and the ligand is stable under a strong alkaline condition and can well maintain catalytic activity when being used for the copper-catalyzed aryl chloride coupling reaction. In addition, the copper catalyst adopting the compound as the ligand can particularly effectively promote coupling of copper catalyzed aryl chloride and various nucleophilic reagents which are difficult to generate under conventional conditions, C-N, C-O and C-S bonds are generated, and numerous useful small molecule compounds are synthesized. Therefore, the aryl halide coupling reaction has a very good large-scale application prospect by adopting the copper catalysis system of the ligand.
Cu-Catalyzed Cross-Coupling of Nitroarenes with Aryl Boronic Acids to Construct Diarylamines
Guan, Xinyu,Zhu, Haoran,Driver, Tom G.
, p. 12417 - 12422 (2021/10/12)
The development and study of a simple copper-catalyzed reaction of nitroarenes with aryl boronic acids to form diarylamines that uses phenyl silane as the stoichiometric terminal reductant is described. This cross-coupling reaction requires as little as 2 mol % of CuX and 4 mol % of diphosphine for success and tolerates a broad range of functional groups on either the nitroarene or the aryl boronic acid to afford the amine in good yield. Mechanistic investigations established that the cross-coupling reaction proceeds via a nitrosoarene intermediate and that copper is required to catalyze both the deoxygenation of the nitroarene to afford the nitrosoarene and C-NAr bond formation of the nitrosoarene with the aryl boronic acid.