78-83-1Relevant articles and documents
Pitfalls in the toxicological analysis of an isobutyl nitrite-adulterated coffee drink
Seto, Yasuo,Kataoka, Mieko,Tsuge, Kouichiro,Takaesu, Hajime
, p. 5187 - 5192 (2000)
A forensic investigation was carried out on one poisoning case, where cyanide was first detected in an evidence sample of a canned coffee drink. A more complete study revealed that it had been adulterated with isobutyl nitrite (IBN) and not cyanide. We examined the detectivity of IBN and related compounds by headspace gas chromatography and capillary electrophoresis. IBN decomposes to isobutyl alcohol (iBuOH) and nitrite in aqueous solution, and under higher temperature and more acidic conditions, the rate of this reaction becomes more rapid. IBN was also produced by the esterification of iBuOH with nitrite below pH 5. Cyanide was produced in a coffee solution by the addition of nitrite below pH 6. An IBN-spiked canned coffee drink solution was stored at 4 °C and periodically analyzed for IBN, iBuOH, nitrite, nitrate, and cyanide. Since the IBN level decreased rapidly, 1BuOH was produced in an almost 90% molar yield. Nitrite production reached a maximum of 40% molar recovery on the first day and then gradually disappeared. The nitrate level reached a plateau of ~60% molar recovery. Cyanide was also detected, and its level at the 14th day was ~0.26% molar recovery. These findings suggest that, in a coffee drink solution, IBN undergoes hydrolysis to produce iBuOH and nitric acid, which is oxidized to nitrate and also produces cyanide through the nonspecific oxidation of organic compounds under acidic conditions.
Manganese-Catalyzed Selective Upgrading of Ethanol with Methanol into Isobutanol
Liu, Yaqian,Shao, Zhihui,Wang, Yujie,Xu, Lijin,Yu, Zhiyong,Liu, Qiang
, p. 3069 - 3072 (2019)
Isobutanol serves as an ideal gasoline additive owing to its good compatibility with current engine technology, high energy density, and high octane number. Herein, an efficient and selective Mn-catalyzed upgrading of ethanol with methanol into isobutanol is reported. This is the first example of deoxygenative coupling of lower alcohols to isobutanol by using a homogeneous non-noble-metal catalyst. This transformation proceeded at very low catalyst loading with a high turnover number (9233) and up to 96 % isobutanol selectivity.
(Hexamethylbenzene)Ru catalysts for the Aldehyde-Water Shift reaction
Phearman, Alexander S.,Moore, Jewelianna M.,Bhagwandin, Dayanni D.,Goldberg, Jonathan M.,Heinekey, D. Michael,Goldberg, Karen I.
supporting information, p. 1609 - 1615 (2021/03/09)
The Aldehyde-Water Shift (AWS) reaction uses H2O as a benign oxidant to convert aldehydes to carboxylic acids, producing H2, a valuable reagent and fuel, as its sole byproduct. (Hexamethylbenzene)RuIIcomplexes are demonstrated to have higher activity and selectivity (up to 95%) for AWS over disproportionation than previously reported catalysts.
Disproportionation of aliphatic and aromatic aldehydes through Cannizzaro, Tishchenko, and Meerwein–Ponndorf–Verley reactions
Sharifi, Sina,Sharifi, Hannah,Koza, Darrell,Aminkhani, Ali
, p. 803 - 808 (2021/07/20)
Disproportionation of aldehydes through Cannizzaro, Tishchenko, and Meerwein–Ponndorf–Verley reactions often requires the application of high temperatures, equimolar or excess quantities of strong bases, and is mostly limited to the aldehydes with no CH2 or CH3 adjacent to the carbonyl group. Herein, we developed an efficient, mild, and multifunctional catalytic system consisting AlCl3/Et3N in CH2Cl2, that can selectively convert a wide range of not only aliphatic, but also aromatic aldehydes to the corresponding alcohols, acids, and dimerized esters at room temperature, and in high yields, without formation of the side products that are generally observed. We have also shown that higher AlCl3 content favors the reaction towards Cannizzaro reaction, yet lower content favors Tishchenko reaction. Moreover, the presence of hydride donor alcohols in the reaction mixture completely directs the reaction towards the Meerwein–Ponndorf–Verley reaction. Graphic abstract: [Figure not available: see fulltext.].
Ultrastable Cu Catalyst for CO2 Electroreduction to Multicarbon Liquid Fuels by Tuning C–C Coupling with CuTi Subsurface
Duan, Chongxiong,Duan, Delong,Hu, Fei,Jiang, Jun,Jiang, Yawen,Kong, Tingting,Liu, Qi,Long, Ran,Lv, Xuefeng,Wang, Xiaonong,Xiong, Yujie,Yang, Li,Zeng, Longjiao
supporting information, p. 26122 - 26127 (2021/11/12)
Production of multicarbon (C2+) liquid fuels is a challenging task for electrocatalytic CO2 reduction, mainly limited by the stabilization of reaction intermediates and their subsequent C?C couplings. In this work, we report a unique catalyst, the coordinatively unsaturated Cu sites on amorphous CuTi alloy (a-CuTi@Cu) toward electrocatalytic CO2 reduction to multicarbon (C2-4) liquid fuels. Remarkably, the electrocatalyst yields ethanol, acetone, and n-butanol as major products with a total C2-4 faradaic efficiency of about 49 % at ?0.8 V vs. reversible hydrogen electrode (RHE), which can be maintained for at least 3 months. Theoretical simulations and in situ characterization reveals that subsurface Ti atoms can increase the electron density of surface Cu sites and enhance the adsorption of *CO intermediate, which in turn reduces the energy barriers required for *CO dimerization and trimerization.
Chromium-Catalyzed Production of Diols From Olefins
-
Paragraph 0111, (2021/03/19)
Processes for converting an olefin reactant into a diol compound are disclosed, and these processes include the steps of contacting the olefin reactant and a supported chromium catalyst comprising chromium in a hexavalent oxidation state to reduce at least a portion of the supported chromium catalyst to form a reduced chromium catalyst, and hydrolyzing the reduced chromium catalyst to form a reaction product comprising the diol compound. While being contacted, the olefin reactant and the supported chromium catalyst can be irradiated with a light beam at a wavelength in the UV-visible spectrum. Optionally, these processes can further comprise a step of calcining at least a portion of the reduced chromium catalyst to regenerate the supported chromium catalyst.
Role of Ga3+promoter in the direct synthesis of iso-butanolviasyngas over a K-ZnO/ZnCr2O4catalyst
Zhang, Tao,Zeng, Chunyang,Wu, Yingquan,Gong, Nana,Yang, Jiaqian,Yang, Guohui,Tsubaki, Noritatsu,Tan, Yisheng
, p. 1077 - 1088 (2021/02/26)
The direct synthesis of iso-butanol is an important reaction in syngas (composed of CO and H2) conversion. K-ZnO/ZnCr2O4(K-ZnCr) is a commonly used catalyst. Here, Ga3+is used as an effective promoter to boost the efficiency of the catalyst and retard the production of CO2. X-ray diffraction, X-ray photoelectron spectroscopy, ultraviolet-visible diffuse reflection spectroscopy and electron microscopy were used to characterize the structural variations with different amounts of Ga3+, the results showed that the particle size of the catalyst decreases with the addition of Ga3+. The temperature-programmed desorption of NH3and CO2, and diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTs) analysis of the CO adsorption revealed that the acidity and basicity were altered owing to the different forms of Ga3+adoption. X-ray photoelectron spectroscopy and density functional theory (DFT) calculations revealed that the formation of Ga clusters that are coordinated on the exposed surfaces of ZnCr2O4, and undergo a tetra-coordinated Ga3+exchange with one of the Zn in ZnCr2O4(ZG) and ZnGa2O4, probably depends on the amount of Ga added. The structural evolution of the Ga3+promoted K-ZnO/ZnCr2O4catalysts can be described as follows: (i) the main forms are ZG and Ga coordinated ZnCr2O4, in which the amount of Ga3+is below 1.10 wt%; and (ii) the Ga3+containing compound is gradually changed from ZG to ZnGa2O4and the amount of gallium clusters increased when the amount of Ga3+was higher than 1.10 wt%. The catalytic performance evaluation results show that K-Ga1.10ZnCr exhibits the highest space time yield and selectivity of alcohols, in which the three compounds play different roles in syngas conversion: ZG is the main active site that boosts the efficiency of the catalysts, owing to the intensified CO adsorption and decreased activation energy of CHO formation through CO hydrogenation; ZnGa2O4only modifies the surface basicity and acidity on the catalyst, thereby impacting the carbon chain growth after the CO is adsorbed. The effects of Ga coordinated with ZnCr2O4shows little impact on the CO adsorption owing to the weak electron donating effects of Ga.
PROCESS FOR ISOBUTANOL PRODUCTION FROM ETHANOL AND SYNGAS
-
Page/Page column 11, (2021/04/01)
Processes for converting ethanol and syngas (CO and H2) to isobutanol are disclosed. Syngas and ethanol are reacted in the first reaction zone in the presence of a first heterogeneous catalyst to produce a first reactor effluent comprising a first mixture of alcohols. The first reactor effluent is reacted a second reaction zone in the presence of a second heterogeneous catalyst to produce a second reactor effluent comprising a second mixture of alcohols. The second reactor effluent is separated into an overhead gas stream and a liquid bottom stream. The liquid bottom stream is separated into at least a C1-2 stream, a C3 stream, and a C4+ stream. The isobutanol is recovered from the C4+ stream.
SYSTEMS AND METHODS FOR REGIOSELECTIVE CARBONYLATION OF 2,2-DISUBSTITUTED EPOXIDES FOR THE PRODUCTION OF ALPHA,ALPHA-DISUBSTITUTED BETA-LACTONES
-
Paragraph 0082, (2021/01/29)
Provided are methods of producing carbonyl compounds (e.g., carbonyl containing compounds) and catalysts for producing carbonyl compounds. Also provided are methods of making polymers from carbonyl compounds and polymers formed from carbonyl compounds. A method may produce carbonyl compounds, such as, for example α,α-disubstituted carbonyl compounds (e.g., α,α-disubstituted β-lactones). The polymers may be produced from α,α-disubstituted β-lactones, which may be produced by a method described herein.
METHOD FOR PRODUCING BIO ALCOHOL FROM INTERMEDIATE PRODUCTS OF ANAEROBIC DIGESTION TANK
-
Paragraph 0057-0060; 0063; 0065-0066; 0068-0069; 0071, (2021/05/25)
The present invention relates to a method for producing a bio-alcohol by reacting a mixture of volatile fatty acid with methanol in 2 through 11 in a reactor in the presence of a 280 °C-membered alkaline earth metal catalyst or 400 °C transition metal catalyst formed based on a support.