89-64-5Relevant articles and documents
Theoretical and experimental evidence of the photonitration pathway of phenol and 4-chlorophenol: A mechanistic study of environmental significance
Bedini, Andrea,Maurino, Valter,Minero, Claudio,Vione, Davide
, p. 418 - 424 (2012)
Light-induced nitration pathways of phenols are important processes for the transformation of pesticide-derived secondary pollutants into toxic derivatives in surface waters and for the formation of phytotoxic compounds in the atmosphere. Moreover, phenols can be used as NO2 probes in irradiated aqueous solutions. This paper shows that the nitration of 4-chlorophenol (4CP) into 2-nitro-4-chlorophenol (NCP) in the presence of irradiated nitrate and nitrite in aqueous solution involves the radical NO2. The experimental data allow exclusion of an alternative nitration pathway by OH + NO2. Quantum mechanical calculations suggest that the nitration of both phenol and 4CP involves, as a first pathway, the abstraction of the phenolic hydrogen by NO2, which yields HNO2 and the corresponding phenoxy radical. Reaction of phenoxyl with another NO2 follows to finally produce the corresponding nitrated phenol. Such a pathway also correctly predicts that 4CP undergoes nitration more easily than phenol, because the ring Cl atom increases the acidity of the phenolic hydrogen of 4CP. This favours the H-abstraction process to give the corresponding phenoxy radical. In contrast, an alternative nitration pathway that involves NO 2 addition to the ring followed by H-abstraction by oxygen (or by NO2 or OH) is energetically unfavoured and erroneously predicts faster nitration for phenol than for 4CP.
Light-Controlled Tyrosine Nitration of Proteins
Long, Tengfang,Liu, Lei,Tao, Youqi,Zhang, Wanli,Quan, Jiale,Zheng, Jie,Hegemann, Julian D.,Uesugi, Motonari,Yao, Wenbing,Tian, Hong,Wang, Huan
supporting information, p. 13414 - 13422 (2021/05/12)
Tyrosine nitration of proteins is one of the most important oxidative post-translational modifications in vivo. A major obstacle for its biochemical and physiological studies is the lack of efficient and chemoselective protein tyrosine nitration reagents. Herein, we report a generalizable strategy for light-controlled protein tyrosine nitration by employing biocompatible dinitroimidazole reagents. Upon 390 nm irradiation, dinitroimidazoles efficiently convert tyrosine residues into 3-nitrotyrosine residues in peptides and proteins with fast kinetics and high chemoselectivity under neutral aqueous buffer conditions. The incorporation of 3-nitrotyrosine residues enhances the thermostability of lasso peptide natural products and endows murine tumor necrosis factor-α with strong immunogenicity to break self-tolerance. The light-controlled time resolution of this method allows the investigation of the impact of tyrosine nitration on the self-assembly behavior of α-synuclein.
3-(Ethoxycarbonyl)-1-(5-methyl-5-(nitrosooxy)hexyl)pyridin-1-ium cation: A green alternative to tert-butyl nitrite for synthesis of nitro-group-containing arenes and drugs at room temperature
Chaudhary, Renu,Natarajan, Palani,Rani, Neetu,Sakshi,Venugopalan, Paloth
supporting information, (2019/12/30)
Due to their remarkable properties, task-specific ionic liquids have turned out to be progressively popular over the last few years in the field of green organic synthesis. Herein, for the first time, we report that a new task-specific nitrite-based ionic liquid such as 3-(ethoxycarbonyl)-1-(5-methyl-5-(nitrosooxy)hexyl)pyridin-1-ium bis(trifluoromethanesulfonyl)imides (TS-N-IL) derived from biodegradable ethyl nicotinate indeed acted as an efficient and eco-friendly reagent for the synthesis of highly valuable nitroaromatic compounds and drugs including nitroxynil, tolcapone, niclofolan, flutamide, niclosamide and nitrazepam. The bridging of an ionic liquid with nitrite group not only increases the yield and rate of direct C[sbnd]N bond formation reaction but also allows easy product separation and recyclability of a byproduct. Nonvolatile nature, easy synthesis, merely stoichiometric need and mildness are a portion of the extra focal points of TS-N-IL while contrasted with tert-butyl nitrite an outstanding and highly-flammable reagent utilized largely in organic synthesis.
Iodine(III)-Catalyzed Electrophilic Nitration of Phenols via Non-Br?nsted Acidic NO2+ Generation
Juárez-Ornelas, Kevin A.,Jiménez-Halla, J. Oscar C.,Kato, Terumasa,Solorio-Alvarado, César R.,Maruoka, Keiji
supporting information, p. 1315 - 1319 (2019/03/07)
The first catalytic procedure for the electrophilic nitration of phenols was developed using iodosylbenzene as an organocatalyst based on iodine(III) and aluminum nitrate as a nitro group source. This atom-economic protocol occurs under mild, non-Br?nsted acidic and open-flask reaction conditions with a broad functional-group tolerance including several heterocycles. Density functional theory (DFT) calculations at the (SMD:MeCN)Mo8-HX/(LANLo8+f,6-311+G) level indicated that the reaction proceeds through a cationic pathway that efficiently generates the NO2+ ion, which is the nitrating species under neutral conditions.
Kinetics and mechanism of trichloroisocyanuric acid/NaNO2-triggered nitration of aromatic compounds under acid-free and Vilsmeier-Haack conditions
Bhooshan,Rajanna,Govardhan,Venkanna,Satish Kumar
, p. 445 - 462 (2019/04/10)
Kinetics and mechanism of nitration of aromatic compounds using trichloroisocyanuric acid (TCCA)/NaNO2, TCCA-N,N-dimethyl formamide (TCCA-DMF)/NaNO2, and TCCA-N,N-dimethyl acetamide (TCCA-DMA)/NaNO2 under acid-free and Vilsmeier-Haack conditions. Reactions followed second-order kinetics with a first-order dependence on [Phenol] and [Nitrating agent] ([TCCA], [(TCCA-DMF)], or [(TCCA-DMA)] >> [NaNO2]). Reaction rates accelerated with the introduction of electron-donating groups and retarded with electron-withdrawing groups, but did not fit well into the Hammett's theory of linear free energy relationship or its modified forms like Brown-Okamoto or Yukawa-Tsuno equations. Rate data were analyzed by Charton's multiple linear regression analysis. Isokinetic temperature (β) values, obtained from Exner's theory for different protocols, are 403.7?K (TCCA-NaNO2), 365.8?K (TCCA-DMF)/NaNO2, and 358?K (TCCA-DMA)/NaNO2. These values are far above the experimental temperature range (303-323?K), indicating that the enthalpy factors are probably more important in controlling the reaction.
Copper-mediated nitrosation: 2-nitrosophenolato complexes and their use in the synthesis of heterocycles
Nicholls, Alexander J.,Batsanov, Andrei S.,Baxendale, Ian R.
, (2019/11/28)
A simple protocol yielding ortho-substituted nitrosophenols from phenols is demonstrated, in the form of copper(II) bis(nitrosophenolato) complexes. The developed methodology was applied to a range of substrates, confirming the role of the copper in both the formation and protection of the challenging 1, 2-substitution pattern. Using polymer supported thiourea, the Cu could be stripped from the complexes and thus enabled the isolation or identification of the uncoordinated ligands and their decomposition products, in yields generally low in line with the intrinsic high reactivity of 2-nitrosophenols. The product complexes are useful intermediates as demonstrated in revisiting a formal [4 + 2] cycloaddition with dimethylacetylene dicarboxylate to synthesise bicyclic products in variable yields, revealing the product has a novel structure different from those previously reported in the literature.
Nitration method for aryl phenol or aryl ether derivative
-
Paragraph 0050-0058, (2020/01/03)
The invention relates to a nitration method for an aryl phenol or aryl ether derivative. The method comprises the steps of stirring an aryl phenol or aryl ether compound, nitrate, trimethylchlorosilane (TMSCl) and a copper salt in an acetonitrile solution in air at room temperature, simultaneously, monitoring extent of reaction through a TLC dot plate, removing a solvent from a mixture by a rotaryevaporator after a substrate is consumed completely, and carrying out purification through a silica-gel column, thereby obtaining a nitroolefin derivative. Meanwhile, the selective mono-nitration orbis-nitration of the substrate can be achieved through controlling equivalent weight of the nitrate. Compared with the prior art, the nitration method disclosed by the invention has the advantages that the consumption of strong-acid substances is avoided, the reaction conditions are mild, the yield is high, the applicable range of the substrate is wide, reaction activity is free of obvious attenuation after an amplified reaction, and an excellent yield is still obtained, so that the method has an obvious industrial application value.
Sodium perborate/NaNO2/KHSO4-triggered synthesis and kinetics of nitration of aromatic compounds
Rajanna,Muppidi, Suresh,Pasnoori, Srinivas,Saiprakash
, p. 6023 - 6038 (2018/09/21)
Sodium perborate (SPB) was used as efficient green catalyst for NaNO2/KHSO4-mediated nitration of aromatic compounds in aqueous acetonitrile medium. Synthesis of nitroaromatic compounds was achieved under both conventional and solvent-free microwave conditions. Reaction times were comparatively shorter in the microwave-assisted than conventional reaction. The reaction kinetics for nitration of phenols in aqueous bisulfate and acetonitrile medium indicated first-order dependence on [Phenol], [NaNO2], and [SPB]. Reaction rates accelerated with introduction of electron-donating groups but retarded with electron-withdrawing groups. Kinetic results did not fit well quantitatively with Hammett’s equation. Observed deviations from linearity were addressed in terms of exalted Hammett’s constants (σˉ or σeff), para resonance interaction energy (ΔΔGp) parameter, and Yukawa–Tsuno parameter (r). This term provides a measure of the extent of resonance stabilization for a reactive structure that builds up charge (positive) in its transition state. The observed negative entropy of activation (?ΔS#) suggests greater solvation and/or cyclic transition state before yielding products.
Room-Temperature, Water-Promoted, Radical-Coupling Reactions of Phenols with tert -Butyl Nitrite
Wei, Wen-Ting,Zhu, Wen-Ming,Liang, Weida,Wu, Yi,Huang, Hui-Yan,Huang, Yi-Ling,Luo, Junfei,Liang, Hongze
supporting information, p. 2153 - 2156 (2017/09/26)
A radical-radical cross-coupling reaction of phenols with tert -butyl nitrite has been developed with the use of water as an additive. This method allows the construction of C-N bonds under an air atmosphere at room temperature, providing the ortho -nitrated phenol derivative in moderate to good yields.
Highly efficient protocol for the aromatic compounds nitration catalyzed by magnetically recyclable core/shell nanocomposite
Maleki, Ali,Aghaei, Morteza,Paydar, Reza
, p. 485 - 490 (2017/01/10)
An efficient protocol for the nitration of aromatic compounds in the presence of a catalytic amount of sulfuric acid-functionalized silica-based magnetic core/shell nanocomposite was reported. The designed products were obtained in high yields in relatively short reaction times at room temperature under solvent-free conditions. The nanocatalyst was simply recovered from the reaction mixture by using an external magnet and efficiently reused for several times. The characterization of particle size, morphology and elemental analysis of the nanocatalyst were provided by scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy analyses, respectively.