6285-05-8Relevant articles and documents
Rhizopus arrhizus mediated SAR studies in chemoselective biotransformation of haloketones at ambient temperature
Salokhe, Prabha R.,Salunkhe, Rajeshri S.
, (2021/09/13)
We have demonstrated a green chemistry approach using the fungus Rhizopus arrhizus for the reductive dehalogenation and synthesis of chiral secondary carbinols and halohydrins of pharmaceutical importance in mild, inexpensive, and environmental friendly process at ambient temperature. In the present study, we have succeeded in unravelling the relationship between the position of the substituent group in the structure of substrate and bioreduction activity of the fungus Rhizopus arrhizus. The asymmetric reduction of the carbonyl group to corresponding chiral halohydrin takes place with good yield and excellent enantiomeric excess (≥92%) when the substituent halogen is on the aromatic nucleus. However, novel results concerning reductive dehalogenation are obtained when halogen is incorporated in the alkyl side chain. Thus, the fungus Rhizopus arrhizus has great potential to bring chemoenzymatic biotransformation of halo ketones. Various influential processing parameters such as microbe selection, temperature, pH, etc. were also investigated to optimize the growth of biocatalyst.
Synthesis and reactivity of α-sulfenyl-β-chloroenones, including oxidation and Stille cross-coupling to form chalcone derivatives
Kearney, Aoife M.,Murphy, Linda,Murphy, Chloe C.,Eccles, Kevin S.,Lawrence, Simon E.,Collins, Stuart G.,Maguire, Anita R.
supporting information, (2021/05/04)
The synthesis of a range of novel α-sulfenyl-β-chloroenones from the corresponding α-sulfenylketones, via a NCS mediated chlorination cascade, is described. The scope of the reaction has been investigated and compounds bearing alkyl- and arylthio substituents have been synthesised. In most instances, the Z α-sulfenyl-β-chloroenones were formed as the major products, while variation of the substituent at the β-carbon position led to an alteration in stereoselectivity. Stille cross-coupling with the Z α-sulfenyl-β-chloroenones led to selective formation of Z sulfenyl chalcones, while the E α-sulfenyl-β-chloroenones did not react under the same conditions. Oxidation of the Z α-sulfenyl-β-chloroenones was followed by isomerisation, leading to the E α-sulfinyl-β-chloroenones. Stille cross-coupling with the E α-sulfinyl-β-chloroenones produced the E sulfinyl chalcones. Either the E or Z sulfinyl chalcones can be obtained by altering the sequence of oxidation and Stille cross-coupling.
Iridium Complexes as Efficient Catalysts for Construction of α-Substituted Ketones via Hydrogen Borrowing of Alcohols in Water
Luo, Nianhua,Zhong, Yuhong,Wen, Huiling,Shui, Hongling,Luo, Renshi
, p. 1355 - 1364 (2021/03/03)
Ketones are of great importance in synthesis, biology, and pharmaceuticals. This paper reports an iridium complexes-catalyzed cross-coupling of alcohols via hydrogen borrowing, affording a series of α-alkylated ketones in high yield (86 %–95 %) and chemoselectivities (>99 : 1). This methodology has the advantages of low catalyst loading (0.1 mol%) and environmentally benign water as the solvent. Studies have shown the amount of base has a great impact on chemoselectivities. Meanwhile, deuteration experiments show water plays an important role in accelerating the reduction of the unsaturated ketones intermediates. Remarkably, a gram-scale experiment demonstrates this methodology of iridium-catalyzed cross-coupling of alcohols has potential application in the practical synthesis of α-alkylated ketones.
V2O5@TiO2 Catalyzed Green and Selective Oxidation of Alcohols, Alkylbenzenes and Styrenes to Carbonyls
Upadhyay, Rahul,Kumar, Shashi,Maurya, Sushil K.
, p. 3594 - 3600 (2021/07/02)
The versatile application of different functional groups such as alcohols (1° and 2°), alkyl arenes, and (aryl)olefins to construct carbon-oxygen bond via oxidation is an area of intense research. Here, we report a reusable heterogeneous V2O5@TiO2 catalyzed selective oxidation of various functionalities utilizing different mild and eco-compatible oxidants under greener reaction conditions. The method was successfully applied for the alcohol oxidation, oxidative scission of styrenes, and benzylic C?H oxidation to their corresponding aldehydes and ketones. The utilization of mild and eco-friendly oxidizing reagents such as K2S2O8, H2O2 (30 % aq.), TBHP (70 % aq.), broad substrate scope, gram-scale synthesis, and catalyst recyclability are notable features of the developed protocol.
Method for preparing alpha-alkyl substituted ketone compound
-
Paragraph 0149-0156, (2020/12/29)
The invention relates to a method for preparing an alpha-alkyl substituted ketone compound, which comprises the following steps: preparing a primary alcohol compound and a secondary alcohol compound as raw materials, adding alkali; with a cyclic iridium complex as a catalyst and water as a reaction medium, heating and stirring the mixture and reacting for 10 to 24 hours under the protection of inert gas, and cooling a reaction product to room temperature after the reaction is finished; carrying out reduced pressure distillation and concentration to obtain a crude product, and carrying out column chromatography purification to obtain a series of alpha alkyl substituted ketone compounds. The method is simple to operate, available in raw materials, low in price, high in reaction efficiency and selectivity, good in adaptability to various functional groups and wide in substrate universality; since water is used as a reaction medium to meet the green and environment-friendly requirements, the method is environmentally friendly and is carried out at gram level, so that the potential of industrially synthesizing the alpha alkyl substituted ketone compound is achieved; therefore, The method has expanded application in the fields of medicines, organic synthesis and the like.
Combination of organocatalytic oxidation of alcohols and organolithium chemistry (RLi) in aqueous media, at room temperature and under aerobic conditions
Elorriaga, David,García-álvarez, Joaquín,González-Sabín, Javier,Hevia, Eva,Morís, Francisco,Presa Soto, Alejandro,Ríos-Lombardía, Nicolás,Rodríguez-álvarez, María Jesús
supporting information, p. 8932 - 8935 (2020/08/17)
A tandem protocol to access tertiary alcohols has been developed which combines the organocatalytic oxidation of secondary alcohols to ketones followed by their chemoselective addition by several RLi reagents. Reactions take place at room temperature, under air and in aqueous solutions, a trio of conditions that are typically forbidden in polar organometallic chemistry.
Novel benzene-based carbamates for ache/bche inhibition: Synthesis and ligand/structure-oriented sar study
Bak, Andrzej,Kozik, Violetta,Kozakiewicz, Dariusz,Gajcy, Kamila,Strub, Daniel Jan,Swietlicka, Aleksandra,Stepankova, Sarka,Imramovsky, Ales,Polanski, Jaroslaw,Smolinski, Adam,Jampilek, Josef
, (2019/05/10)
A series of new benzene-based derivatives was designed, synthesized and comprehensively characterized. All of the tested compounds were evaluated for their in vitro ability to potentially inhibit the acetyl-and butyrylcholinesterase enzymes. The selectivity index of individual molecules to cholinesterases was also determined. Generally, the inhibitory potency was stronger against butyryl-compared to acetylcholinesterase; however, some of the compounds showed a promising inhibition of both enzymes. In fact, two compounds (23, benzyl ethyl(1-oxo-1-phenylpropan-2-yl)carbamate and 28, benzyl (1-(3-chlorophenyl)-1-oxopropan-2-yl) (methyl)carbamate) had a very high selectivity index, while the second one (28) reached the lowest inhibitory concentration IC50 value, which corresponds quite well with galanthamine. Moreover, comparative receptor-independent and receptor-dependent structure–activity studies were conducted to explain the observed variations in inhibiting the potential of the investigated carbamate series. The principal objective of the ligand-based study was to comparatively analyze the molecular surface to gain insight into the electronic and/or steric factors that govern the ability to inhibit enzyme activities. The spatial distribution of potentially important steric and electrostatic factors was determined using the probability-guided pharmacophore mapping procedure, which is based on the iterative variable elimination method. Additionally, planar and spatial maps of the host–target interactions were created for all of the active compounds and compared with the drug molecules using the docking methodology.
Synthesis method of propanil
-
Paragraph 0018; 0022; 0026; 0030; 0034, (2018/11/22)
The invention discloses a synthesis method of propanil. The synthesis method comprises the following steps: firstly performing an acylation reaction on chlorobenzene as a raw material and propionyl chloride to produce p-chloropropiophenone, then performing a condensation reaction on the p-chloropropiophenone and hydroxylamine hydrochloride to produce 1-(4-chlorophenyl)-1-acetoxime, then rearranging the 1-(4-chlorophenyl)-1-acetoxime under an acidic condition, and finally chlorinating to obtain the propanil. By the synthesis method, the reaction selectivity in each step is relatively high, no obvious side reaction occurs and the reaction conversion rate is high, so that the reaction yield is high and the product purity is high; a reaction condition is mild; the raw material cost is low; a requirement on reaction equipment is low; phosphorus-containing wastewater discharge is avoided; extension and tolerance are strong; the conversion success rate from trial production to large-scale production is high, and even if the reaction is interrupted, the trial production can be continued in the later stage; and therefore, the synthesis method is suitable for industrial mass production.
Solvent free, light induced 1,2-bromine shift reaction of α-bromo ketones
An, Sejin,Moon, Da Yoon,Park, Bong Ser
, p. 6922 - 6928 (2018/10/24)
Photolysis of α-bromopropiophenones in acetonitrile results in formation of β-bromopropiophenones with good product selectivity, which can be coined as 1,2-Br shift reaction. The product selectivity increases when the reaction is done in neat or solid state, where only the 1,2-Br shift product is formed in some cases. The reaction is suggested to proceed by C–Br bond homolysis to give a radical pair, followed by disproportionation and conjugate addition of HBr to the α,β-unsaturated ketone intermediate. When the unsaturated intermediate is stabilized by an extra conjugation, the reaction stops at the stage, in which the unsaturated ketone becomes a major product. The synthetic method described in this research fits in a category of eco-friendly organic synthesis nicely since the reaction does not use volatile organic solvents and any other additives such as acid, base or metal catalysts, etc. Besides, the method fits into perfect atom economy, which does not give any side products. The synthetic method should find much advantage over other alternative methods to obtain β-bromo carbonyl compounds.
Nickel-Catalyzed Addition of Arylboronic Acids to Alkyl Nitriles for Synthesis of Aryl Ketones in Fluorinated Solvent
Tu, Dong-Huai,Li, Yang,Zhao, Bo,Gu, Yu-Jie,Wang, Bo,Lu, Ju-You,Lu, Jian
supporting information, p. 593 - 596 (2017/12/06)
A mild and efficient nickel-catalyzed addition of arylboronic acids to alkyl nitriles in a fluorinated solvent for the synthesis of various aryl ketones is described. A broad range of arylboronic acids and alkyl nitriles were investigated, and the desired products were obtained with good to excellent yields under the optimized conditions. This method provides an opportunity for the synthesis of aryl ketones from alkyl nitriles, especially acetonitrile, with a non-noble metal catalyst in one pot.